95 research outputs found

    SGER: dynamic partitioned global address spaces for future large scale systems

    Get PDF
    Issued as final reportNational Science Foundation (U.S.

    Temperature Regulation in Multicore Processors Using Adjustable-Gain Integral Controllers

    Full text link
    This paper considers the problem of temperature regulation in multicore processors by dynamic voltage-frequency scaling. We propose a feedback law that is based on an integral controller with adjustable gain, designed for fast tracking convergence in the face of model uncertainties, time-varying plants, and tight computing-timing constraints. Moreover, unlike prior works we consider a nonlinear, time-varying plant model that trades off precision for simple and efficient on-line computations. Cycle-level, full system simulator implementation and evaluation illustrates fast and accurate tracking of given temperature reference values, and compares favorably with fixed-gain controllers.Comment: 8 pages, 6 figures, IEEE Conference on Control Applications 2015, Accepted Versio

    Demystifying the Characteristics of 3D-Stacked Memories: A Case Study for Hybrid Memory Cube

    Full text link
    Three-dimensional (3D)-stacking technology, which enables the integration of DRAM and logic dies, offers high bandwidth and low energy consumption. This technology also empowers new memory designs for executing tasks not traditionally associated with memories. A practical 3D-stacked memory is Hybrid Memory Cube (HMC), which provides significant access bandwidth and low power consumption in a small area. Although several studies have taken advantage of the novel architecture of HMC, its characteristics in terms of latency and bandwidth or their correlation with temperature and power consumption have not been fully explored. This paper is the first, to the best of our knowledge, to characterize the thermal behavior of HMC in a real environment using the AC-510 accelerator and to identify temperature as a new limitation for this state-of-the-art design space. Moreover, besides bandwidth studies, we deconstruct factors that contribute to latency and reveal their sources for high- and low-load accesses. The results of this paper demonstrates essential behaviors and performance bottlenecks for future explorations of packet-switched and 3D-stacked memories.Comment: EEE Catalog Number: CFP17236-USB ISBN 13: 978-1-5386-1232-

    HyperTransport Over Ethernet - A Scalable, Commodity Standard for Resource Sharing in the Data Center

    Get PDF
    Future data center configurations are driven by total cost of ownership (TCO) for specific performance capabilities. Low-latency interconnects are central to performance, while the use of commodity interconnects is central to cost. This paper reports on an effort to combine a very high-performance, commodity interconnect (HyperTransport) with a high-volume interconnect (Ethernet). Previous approaches to extending Hyper-Transport (HT) over a cluster used custom FPGA cards [5] and proprietary extensions to coherence schemes [22], but these solutions mainly have been adopted for use in research-oriented clusters. The new HyperShare strategy from the HyperTransport Consortium proposes several new ways to create low-cost, commodity clusters that can support scalable high performance computing in either clusters or in the data center. HyperTransport over Ethernet (HToE) is the newest specification in the HyperShare strategy that aims to combine favorable market trends with a highbandwidth and low-latency hardware solution for noncoherent sharing of resources in a cluster. This paper illustrates the motivation behind using 10, 40, or 100 Gigabit Ethernet as an encapsulation layer for Hyper-Transport, the requirements for the HToE specification, and engineering solutions for implementing key portions of the specification

    Using Rapid Prototyping in Computer Architecture Design Laboratories

    Get PDF
    This paper describes the undergraduate computer architecture courses and laboratories introduced at Georgia Tech during the past two years. A core sequence of six required courses for computer engineering students has been developed. In this paper, emphasis is placed upon the new core laboratories which utilize commercial CAD tools, FPGAs, hardware emulators, and a VHDL based rapid prototyping approach to simulate, synthesize, and implement prototype computer hardware
    • …
    corecore